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On the Limit Behavior of a Multi-Compartment Storage Model

with an Underlying Markov Chain I: Without Normalization

by

Eric S. Tollar

ABSTRACT

The present paper considers a multi-compartment storage model with one way
flow. The inputs and outputs for each compartment are controlled by a denumerable
state Markov chain, Assuming finite first moments, it is shown that certain
compartments converge in distribution while others diverge, based on appropriate

first moment conditions on the inputs and outputs.
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1. INTRODUCTION

Using a stochastic model to approximate the behavior of various physical
storage systems has become wide spread (for example, see Moran [6], Prabhu [7]).
Initially, the random mechanism underlying the models was assumed to be inde-
pendent, but in 1965 Lloyd and Odoom [5] proposed a model in which a dependent
structure was feasible by assuming an underlying Markov chain as part of the
random mechanism. The stochastic model was later expanded to having an under-
lying semi-Markov process, and a specific one compartment storage model with
underlying semi-Markov process was considered by Puri [8], Puri and Senturia [9],
[10], Balagopal [1], Puri and Woolford [11], and others.

In this paper, we will consider a multi-compartment storage system with one-
way flow, similar to that of Puri and Senturia. However, we will only consider
the model with an underlying Markov chain; the more general case for semi-Markov
processes to be considered in a later paper. In this model, material will flow
into the system via compartment 1. Each of the subsequent compartments will get
material from its immediate predecessor by "demanding" a certain amount of mate-
rial. The previous compartment will then transfer the material demanded, or all
the material in the compartment, depending on which is smaller. Finally, the
system will lose material by ''demands" placed on the last:compartment, :whichiare
dealt with as above:. - +»~ ' . <L,

In section 2 we will give the mathematical formulation of the model, and the

closed form for the amount in cach compartment. In section 3 we will establish

the limit behavior of the compartments without normalization.
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2.

THE 'ODEL

let {Xn, n=0, 1, ...} be an aperiodic, irreducible, positive recurrent
Markov chain with state space J, where we take J to be denumerable. We denote
the elements of J by {1, 2, ...}. Define the transition matrix for the Markov

chain P = (pij) by
P(Xn=jlxn_1=i) =psj (2.1)

and let n= ("1’ Tys ...) be the stationary probability measure satisfying 7P =1m.
Further, we define the number of visits to stage jeJ in n steps by
n
M, (n) ;Zol(xin') (2.2)
where I(A) is the indicator function of set A.

For the k-compartment model to be considered, the transmission of material
in the system will be controlled by the underlying Markov chain (X“} and a col-
lection of infinite k +1 - tuples governing the transfer of material. These
k +1 - tuples are defined as follows. For each ieJ, let
(y“(i) = (Vo,n(i)’ Vl,n(i)’ cees Vk,n(i)): n=1, 2, ...} be a sequence of i.i.d.
k +1 - tuples, independent of {Xn} and {!'n(j)} for j#i. We will insist that the
following conditions hold.

i) P( v {an(i) 20, V; () 20})=0, Vi, vn>0.

2

0s2,jsk (2.3)

ii) P(Vj n(i) <0)=0Vi, Vj, ¥vn>0.
?
As will be seen later, the assumptions (2.3) are not mathematically neces-

sary. However, it is not clear that the model itself would be reasonable without

them. Without (2.3i), we would have the problem of simultaneous transfers in




more than one compartment, and it is not clear what should be done in this case.
Without (2.3ii) we would not have a one-way flow model, and it would be there-
fore possible to have compartments with negative amounts of material in them.
To define the equations for the total amount of material in each of the k
compartments, we first define C(n) = (Co(n), Cl’ (n), ..., Ck(n)), where Ci(n)
represents the total amount of material that has left compartment i by step n.
Then it is easy to see that the amount of material in the various compartments,

denoted by Z(n) = (Z1 (n, ..., Zk(n)), is governed by the relation
Zi(n) = Ci_l(n) - Ci(n) . (2.4)
We define C(n) recursively by
n
- *
Co(n) '1§1V°’i(xi) +C*, (2.5)

C*, for n20
Ci(m=y o (2.6)
min[C;_y(n), Vi (X{) +Cy(n-1)], for n>0,5 -
where Ca, C‘l', ey Cf( are the initial values of C(0) (possibly random),

satisfying

C*2C%

S 12'“ch< a.s. (2.7)

By examination of equations (2.4) through (2.7), it is easy to see the
system will function as explained in the introduction.
To shorten the expressions for subsequent theorems, the following notation

is introduced.

0, for n=0

Sl(n) n
*
; Z 1vl’i(xi) +C}, for n>0.




JHEOREM 2.1. The following relationship holds for 1si<k, n21.

i 8053'15,?%2 jiSn(SO(jl) *18,02) -5,G )+ .o 4 [5:(m) -5, D)

The proof will be omitted, as it is straightforward by induction, establishing

the validity for each cell i by assuming it is true for the previous cells.

COROLIARY: The following relation holds for 1<i<k, n>0:

Z.(n) = min [S. () *eee #(S: (M) =S: (G: NI
YU 0sj 5.3, 80 01 i-1 1-1*71-1

- min (SA(G)+...+(S.(m)-S.(3i:NT.
0sj,<...$j;%n 0™1 1 1

The proof is omitted, as it follows immediately from the theorem.
In the next section, we establish the limit behavior of Z(n) without

normalization.

3. LIMIT BEHAVIOR OF THE PROCESS

In this section we estabiish the 1limit behavior of the process Z(n) without
any normalization, when a first moment condition is assumed. The necessary mo-
ments are the standard ones for processes defined on a Markov chain. Thatiis, if
n is the stationary measure for the Markov chain and if for every je J, {Yn(j)}
is an i.i.d. sequence for each j, independent of the Markov chain and {Yn(i)} if
i=j, then we define

EY= Y n.EY,(j). (3.1)
n sz’ 1

For 1s£<k we will refer to compartment £ as subcritical, critical or




supercritical when E_ V,- min (E_V.) is greater than, equal to, or less than
"L oggicp "1

zero, respectively. It will be established that as n tends to infinity, the
subcritical compartments converge, while the critical and supercritical compart-
ments diverge.

The following definitions will also be used in this section.

Definition: {ir} is called the dual Markov chain of {xn} if

1) P(io=j) =7, for all j, and
s T |
2) P(xn+1=1|xn=3) =7y mP

h As has been shown (see Ginlar [3]), we have that {in} is essentially the ''reverse"

ij*
of {Xn}, that is, if Xo has distribution r,

P(X =igs «oop X =i )=P(X =i, ..., )'(mm=i0). (3.2)

We will define

Zi(n) = 0< Jl < m’:-n < Ji-l < n(si_l(jl)"'[si_z(j 2)_ -Si-z(jl)]+' . '*[So(n) —SO(Ji-l)])
(3.3)
- min (5;G+I8; G )-8, 1 G 1+ +I8,(m-5,G D,

0<j,<...5j,<n

where for given n,
.

m
)'_ vZ,i(xi) for m<n
i=1

§£(m) = { (3.4)

m
A Z lvz‘i(ﬁi) +Cp for m=n.

It can then be easily shown if X, ~ = that

0

P(Zy(n) $X;, ..., Z,(0) sX,) =P(2,(n) sx,, ..., ik(n)sxk). (3.5)




Definition: ' {in} is called the auxiliary Markov chain of’ {xn} if 5'(0 has initial

distribution 5, and transition probabilities as in (2.1). As shown in Hoel,
et al. [4], if we define
T= min {X, =X,}, (3.6)
. 1 1
i>0

then T<x a.s. and

P(Xypoy =1y ooes Xy =ips TSM) sPXy =iy, ooy Xy =1, TSML (3.7)

We will also define

0, for n=0
Sp(n) =
3 izlv‘:’i(xi) +C%, for n>0, (3.8)
and define

3 7 (n) = min (5 (50418, (5,)-5, (G )1++..+[8, ()-8, (G, )

N i 05515---Sji_15n 0’1 1472 171 i-1 i-1%i-1
(3.9)

- min (go(jl)+[§l(jz)‘sl(jl)]+'"*[gi(n)'si(ji)])-

0<j,€...$j;%n

The main theorem to be established in this section is the following:

THEOREM 3.1. For any arbitrary distribution of X, and Z(0), if E"|VJ.| <o for

0<j<k, then as n+>, P(Zl(n) SXgs eres Zk(n) sxk)-vP(ZIle, cees Zkak)

for all continuity points (xl, ceey xk) of the distribution of some random

variables Zl, ooy Zk where




0if EV.< min (ELV.)
") 0gicj "1

P(Z. <=)=q .
] 1 if EV.> min (EV.).
m) \ T 1l

"0<i<)

The proof of this theorem requires sevcral steps, which are broken down
into the lemmas and theorems that follow. The first such lemma, which is stated
without proof, is a straightforward extension of the well known result that

lim max % Y.(X;)) =Z* a.s., where P(Z*<») =0+ I(EY20)+1+I(E Y<0),
. . it m L
n+e 0sjsni=0

for {Yn(j)} as in (3.1).

LEMW 3.2. If for all jeJ, (Y (§)=(Yy (3), «.0) Yp ((5)): m21) is am i.id.

secuence, indcpendent of {Xn(i)} for.i=j, and if Ewlyi‘ <o for

. e I
1sisf, then lim max (I I Y, ;(X;)) =Z* exists almost surely,
n+o Osjls...stSnk=1 i=1 ™

where

1 if
i
P(Z* <) =

0 otherwise.

0100

E Y, <0 for all i, 1sis¢

J

The next theorem to be established is the following.

JHEOREM 3.3. Let X, have initial distribution m, E"|Vj|<en for 0<jsk. Then

for all initial distributions Z(0), as n+w

P(Zl(n)le, cees Zk(n)Sx,k)~>P(lex1, vees stxk)

for all continuity points (xl, cens xk) of the distribution of (21, caes Zk)’

where for 1<£sk,

. £ _a s &5 e
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R e 0 (A S A

P(Zp<=)=0+I(EV,< min EV.)+1+I(EV,> min EV,).

PROOF. From (3.5), we have that we need only consider (21(n), veas ik(n)) to

complete the proof. The
n+=; the joint behavior

that for any i,

Z;(m) =
0sj, s

0sj, s

0sj, <

<
0-]15

0sj, s

0sj,s

By defining

(3.10) reduces to

S ——— P A et e B e i Mk Sath A Bl Sad St Bl Sad A" £ A atll ol Sl S ot A ot

-8 -

0<i<£ 0<i<d

almost sure behavior of each ii(n) is established as

then follows automatically. From (3.3) we can see

max (-8, = - =[5, - 5,51
. Sj; S
max (-éi—l(Jl) T e T [éo(n) - §0(J1_1)])
e S ji-l <n
i & s . o
1??3.( <. 5~n(k Z l[si-k(Jk) - si-k+1(Jk)] - So(n))
! (3.10)
i-1 " .
max CY 08 110, -85, (GY -5,(m)

“.SjLISnk=1

i
ma ( S. . G)-8. . .,GID
..’.(sjiSn k§1[ A
i-1 .
max ( 2 [Si_k_l(jk)‘si_k(jk)])-

”.SjLISnk=1

R (1) =8 ()-8 (1) (3.11) |
% 1
= max { e U]
Osjls...sjisnk=1 i-k+1M7k
iil (3.12)
- max [ R. . (i )]
0$j s...85; ;snk=1 1-k27k

PSPy
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For i=1, we have for all initial distributions of 21(0), as n-+w,

21(n)= max (Ry(j))+Z,, a.s.,
0sj<n

where
P(Z1 <o) = I(E“v1 < E"\'O) +1 - I(.Eﬁv1 > Eﬁvo) .

(For details, see Puri and Woolford [11].) Since this is the condition desired

for i =1, we proceed by induction, assuming the theorem holds for £<i and

v p— " Ty
. . ' . AN ]
» ' : LA I

showing it is true for i+ 1.

Let

w= max {&: EVp= min (En\!.)} (3.13)
0<f<i 0<jsi '

Then from (3.12) we have

. i+1 i
Z;,,(n) = max [I R ,0G01- 1 Z,m
1+1 0<j,<...3j5,45n k=11“k4‘2 k £=w+1‘e
w
- max [ 1 Ry, G1

05]15...53‘1511 k=1
Since for w+1<4{<i, E V£> min (E V,)=E V , by the induction hypothesis
i osk<g "K T

Zz(n) ->Z£ a.s., where P(Z£<°°) =1. Consequently, the behavior of Zi*l(n)

depends upon the term

i+l
Y. ,(n) = max [ IR (3,)]
i+l . : Li-k+2 Kk
OSJIS...SJi+15n k=1
] (3.14)
- max [ 2 R k+1(Jk)].

Osjls...sj”sn k=14
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i+l

Y. .(n) = max [ IR (3,01, (3.15)
1+1 0<j <...8j,, Snk=1 i-k+2"’k

which has the desired properties, as can be easily established by appealing to
Lemma 3.2 (after rewriting (3.15)vas in the lemma). Thus, assume w21.

Cicarly for all M<n

i-w+l
053, % ..!?astl - SM(kII Fike2Uid)
v .
+Msjlsr?’.csj <n kz fu-tet O
w
) 0s j]_ Sl?z.n.( < jw Sn(k Z 1Rw-k+1(jk)) (3.16)
¥,
i-w+l
< max (1 RGO

05]15...Sji lsnk 1

By Lemma 3.4, to be established later, we have for all weQ and M> 0, there is

an NM> M where for all n >NM,

w

w
max (IR (3y)) = max (IR Gu)).  (3.17)
0sj <...85 Snk=1 kel k MSj s...$j <n k=1 Wks177k

Thus, from (3.16) and (3.17), we get

i
max R Gy))
. i-k+2%k
OSjls "‘SJi-wdSM k=1
<Y, (3.18)
i-w+l
< max ( 2 Ri-k"‘2(jk)) .

Osjls...sji_w g S0 k=1
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From Lemma 3.2, it is clear that the behavior of

i-§+1

- max ( R, G,
. o i-k+2* 'k
- 05)15. $J1m1s“k"1

derends on E V “ 1+1

CASE I. EV -EV, .<0: In this case, we have from Lemma 3.2 that
—— TwW 7T i+l

j-w e+l

max ') R, re2(3i) *Y 250,

0§, %S5 gD k=1

where P(Y <=) =1, independent of the initial distribution. Thus, for almost

all we, and ¢ >0, we can choose an M where

t{ 1

max R, Guo))

. . i-k+2-'k
05315"’531-\“15“]‘ =1

. i-wel (3.19)

: < max ( z R:I. koZ(Jk)) te.

05y, <S5,y SMk=1

Consequently, it follows from (3.19) that ?iﬂ(n) +Y a.s.

CASE 1I1. E"vw - vaiﬂ 20: In this case, for almost every weQ and any R>0,

there is an M where

i-lil:"'l
max ( R, (i,)) >R.
. i-k+2*'k
0<j, ... 8§, SMK=1
Thus, from (3.18) we get that ?iﬂ(n) + a.s,. 0

Now the Lemma cited in Theorem 3.3 is established.

LEMA 3.4. For v _as defined in (3.13), for almost all we, and for every M>0,
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there exists an NM>M such that for all n >NM,
v

w
max CI R, 1, ))= max (IR, ...G)).
Osjls...stSn k=1 w-ke1™7k Msjls...sjwsn k=1 w-kel1k

PROOF: First, we show that for every M>0 there exists an NM>M where

w w
max (L RopeG)= max ) (3, ). (3.20)
0<j s...5j 5N, k=1 “KITK Msjls...sj“,su,,1<=1R‘"k‘1 k

Since E“sz min E“VJ. (the inductive hypothesis in Theorem 3.3 is still con-
0<sj<w

sidered to hold), we have that i,\,(n) +o a.s,, However, if (3.20) is not true,

then there exists an M where

w

Z, = max (IR (G ))
on OsJ'ls...stsnk==1""'k"1 k
05j1<M
wao1l
] 3.21)
- max C IR .G (
<n k=1 "k K

0.<.jls...sjw_1

s max (R (j;)) <=
0 sjl <M

Thus, we get that (3.20) must hold. We now show that if M> 0, then there is an

NM where for all n >NM,

w

w
max (1 (5y)) = max (L R 1,40 (3.22)
0<j;%...5j,5n k1 ke O My s...sj snk=q KK
First, for C; as defined in (3.8), let c;-o, 0<isw. Then by induction,
it is enough to show that if (3.22) is true for n, then it must be true for n+1,

Assume (3.22) holds for n, and that for M<a_s... Sa, <n,

1




w w
R (a ) = max ( R (i )). (3.23)
kzlw'k"lak Osjls...sjwsnkzl"'k"l k

Show for indices where 0 Sbl S eee Sbw Sn+] and bl <M, there exist indices ¢

w w
where . Z lnw-k*l(bi) < . E IRw-kﬂ(ci) »Msc <...sc snel. Clearly if b <n,

then ¢ =2 will suffice. Thus, assume b,=n+1.

Let j= min ({(k: bizai}. Note j>1, j<w, and b, . <n., Let

1sk<w J-1

ci=ail(i<j) 0biI(iZj). di=bil(i< i) *aiI(izj). Then we have

~ w w
' TR _,)- TR . (b)
] iel w-i+1"1 i1=1 w-i+l'"1
: jil jil
= R__. (a,) - R .. .(b.)
i-l"lﬂ i i_lw-xol i
w w
. = IR (e TR0,
i=1 i=]

Since < -aIZM and d': a <n, get from (3.23) that

R, _..,(c.) -
1\-1101 i i

Ry-ie1

"1 F

(bi) 20.

ne~1g
[

i

Thus, we have shown by induction (3.20) is true when Ci =-C§ =.,..=0,

The case where Ca zC; 2... zC; 20 does not follow automatically, duc to the

peculiar definition of Sz(m) in (3.4) necessary to deal with initial distribu-
tions. However, as can be easily verified, if indices a are selected which

satisfy (3.23) then for any indices Osb1 €..e sbwsn where b, <M, by defining

1
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w w

S as abOVG, ve have that iz lpw-i"’l(bi) < i Z lnw-i;i(ci)t’ and 012.:1'. Thus. the

lerma is established. [

It should Le pointed out that in the above development, Lemma 3.2 was used on
the sums §£(n), 0<i<k. As stated, this lemma is not applicable. However,
since the proof of Lemma 3.2 only requires n! §£(n) +E V, a.s. (see Chung [2]),
the proof of the theorem is still valid. Ve now proceed to the proof of theorem

3.1.

PROOF _OF THEOREM 3.1. Using the concept of an auxiliary process, with defini-

tions (3.6), (3.7), (3.8) and (3.9), we note that for every € >0, there exist

M. and M, such that

0 1
k
P(TSMy, I Z;(Mg) M) >1-e.
i=1
Then for n>M0,
k
P(Zy(m) sx;, «oo) Zy(n) SXp, TsMo,izlzi(Mo) M)
SP(Zl(n) le, ey Zk(n) Sxk) (3.24)

k
SP(Zy(m) $x9, .00y (M) SXp, TsMO,izlzi(MO)snl)oe

From (2.9), it is easy to see that if a zbi for 1<isk, then

i

P(Zy(n) SX;, .0y Z,(n) S, |2(0) = )

(3.25)

SP(Z, (M) sx;, «oy 2 (n) S |2C0) = D).

.,




Thus we get

P2y (n-Mp)sxy, «ovy 2, (n-M) sx ]2, (0) =My, ..oy 2,(0) =M) - €
=P(Zl(n-Mo)Sx1, ceey Zk(n-Mo)Sxk|21(0)=M1, cees Zk(Ml))~e (3.26)

k
SP(Zy(n) sxy, ooy Zy (M) Sxp, TsMo.__z 1zi(Mo) SMy).
18

Similarly we can establish that

k
P(Zi(n) Sx4p ovey Zy (M) Sxp, TSMO,.Z Z;(Mg) SM,)

i=1
(3.27)
sP(il(n-Mo)le, Zk(n-Mo)Sxk]21(0)=0, cees 2,(0) =0).
Thus we get that
P(Z (n-M)sx;, .oy 2, (n-M)sx |2,(0) =My, ..o, 2(0)=M) -
SP(Zy(n) Sxp, «vey Zy(0) $X) (3.28)

SP(Zy(n-Mp)sxq, ..oy 2, (n-M) $x,|2,(0) =0, ..., Z,(0)=0) +e.

Since the convergence of 21 (n) is independent of any initial distribution from

theorem 3.2, from (3.28) we can see that

P(Zy(n) sxq, ..., Zk(n)sxk)-rP(ZIle, cees 2 SX). 0

4. CONCLUSION

The limit behavior of the compartments was shown to depend on the first

moments of the input / output random variables. Since certain compartments

diverge, it is reasonable to desire asymptotic behavior of the critical and
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supercritical compartments, appropriately normalized. The behavior of these

compartments are investigated in (Tollar [12]).

An area of further research would be on the characteristic function of the
limiting distribution of the compartments. Any such characterization seems
quite difficult, however. For the single cell model, results were obtained by
Puri [8], but the techniques used do not seem applicable to the present model.

Another area would be to alter the model to allow a more general flow
structure than one - way flow. However, unlike the present model, there appears
to be no closed form expression for zi(n) in the more general framework. There-
fore the use of dual Markov chains will not be applicable to the more general
model. It appears that a more general technique using Markov chain theory on

arbitrary state spaces may be more fruitful.
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